Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6AFV_1)}(2) \setminus P_{f(7AUD_1)}(2)|=56\),
\(|P_{f(7AUD_1)}(2) \setminus P_{f(6AFV_1)}(2)|=72\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111111011001111101111111111011110010101100101011100100001100001100001110010100110011001110000011111111111111111010110001010000000000111101110010111111001101111101100101000101001110111011001111111111011111011101101001001111101101011110011111011111000110111011101000110001001111100110011011111001110010000111111010011100010111011110011111011001110011010110010111000111001110111111011111001011011100010010111011111111111111000000010011001100000111001111111100011111111110111010111101111111111001101111010111000111110111100010000011011100011110111110111101101111100101001011010111111111111011011010011011101100100010011111010101001001010001010011111111110111111111100101111101101101110100011110010001011100010011101000001111100110110000110101110111100111111110011111011
Pair
\(Z_2\)
Length of longest common subsequence
6AFV_1,7AUD_1
128
4
6AFV_1,7ZYR_1
174
4
7AUD_1,7ZYR_1
184
4
Newick tree
[
7ZYR_1:96.55,
[
6AFV_1:64,7AUD_1:64
]:32.55
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1329
}{\log_{20}
1329}-\frac{563}{\log_{20}563})=195.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6AFV_1
7AUD_1
246
216
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]