Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6ACW_1)}(2) \setminus P_{f(8AOB_1)}(2)|=71\),
\(|P_{f(8AOB_1)}(2) \setminus P_{f(6ACW_1)}(2)|=118\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1011001100111001001100100100110001000010010111101100110001000011000011000111000100110001111110100110000101010101111101000001100101010101100000111010110010111111010100110100100101110100111010111101101001100101011001000000011010011101110110001001010001010100101111011000101100110000001000100000100101
Pair
\(Z_2\)
Length of longest common subsequence
6ACW_1,8AOB_1
189
3
6ACW_1,3NKH_1
177
3
8AOB_1,3NKH_1
174
6
Newick tree
[
6ACW_1:93.01,
[
3NKH_1:87,8AOB_1:87
]:6.01
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{666
}{\log_{20}
666}-\frac{298}{\log_{20}298})=102.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6ACW_1
8AOB_1
133
119.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]