Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5ZRV_1)}(2) \setminus P_{f(4EYI_1)}(2)|=88\),
\(|P_{f(4EYI_1)}(2) \setminus P_{f(5ZRV_1)}(2)|=50\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1110011111001011011000101000101001110000100110101111010010001001000100010011001110001001111000110111110101111000100100100010011001000001111110100111110111000001100000011101011111111111000110111111110111010010100100111100110111111011000010010011101101110001010000111001010110111100010001000100000110111101101100110010011010000011011100000111110010110000011110001001111111111111101010011001100101011001000110110001000110010000110010101000110010111011100101000110010111100011100001111001111000100111100101100101101100000000001011111100101111100111100000111110011011001101001001000111111110110011101100110011011100111101011001100111100010110100011000010001001110101110001000001010110011001110100111101101011111111111011111011010110011001000011010010100111001001000100
Pair
\(Z_2\)
Length of longest common subsequence
5ZRV_1,4EYI_1
138
4
5ZRV_1,7TXN_1
213
3
4EYI_1,7TXN_1
191
4
Newick tree
[
7TXN_1:10.79,
[
5ZRV_1:69,4EYI_1:69
]:40.79
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1183
}{\log_{20}
1183}-\frac{420}{\log_{20}420})=198.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5ZRV_1
4EYI_1
252
194.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]