Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5ZLK_1)}(2) \setminus P_{f(6XCJ_1)}(2)|=118\),
\(|P_{f(6XCJ_1)}(2) \setminus P_{f(5ZLK_1)}(2)|=55\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101001101111100101100000000001010000001000111001110011111101010000010101100110001111000100000000010100110101110100001010111000100011010001000100001111100001111001010111111011001000010110000011111000010001011010110010101101011111010011101011101010100001011010000000101001101101100111110010100101111000011101010010011110011011010100010110101001110000000100110010100001001001011100000101111100001001100010110001101101001001101011010110001101100000101000111111110001100010101101101110111001001100111000000110110100100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{870
}{\log_{20}
870}-\frac{357}{\log_{20}357})=138.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5ZLK_1
6XCJ_1
178
148
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]