Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5ZHE_1)}(2) \setminus P_{f(1FUL_1)}(2)|=171\),
\(|P_{f(1FUL_1)}(2) \setminus P_{f(5ZHE_1)}(2)|=7\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1110100110001110100011111010101100010101110011100100110111001101101011000010011001011101111110001001000010101110000100010001000011011001101011100110101101100110010010101001000110001010011110111001100010011110110101010011110100001011101110000011100110001
Pair
\(Z_2\)
Length of longest common subsequence
5ZHE_1,1FUL_1
178
2
5ZHE_1,2PCC_1
176
4
1FUL_1,2PCC_1
200
2
Newick tree
[
1FUL_1:96.77,
[
5ZHE_1:88,2PCC_1:88
]:8.77
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{264
}{\log_{20}
264}-\frac{11}{\log_{20}11})=87.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
5ZHE_1
1FUL_1
112
58
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]