Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5YST_1)}(2) \setminus P_{f(8SGV_1)}(2)|=31\),
\(|P_{f(8SGV_1)}(2) \setminus P_{f(5YST_1)}(2)|=144\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111010101010111110110100011000101010000110111010111100001110101100110001111001001010011111010001000011010001101000111110100101000010100111000001000010100000100111111001110101011111111110110011111000001011000111000001
Pair
\(Z_2\)
Length of longest common subsequence
5YST_1,8SGV_1
175
4
5YST_1,9JBE_1
205
5
8SGV_1,9JBE_1
144
4
Newick tree
[
5YST_1:10.88,
[
8SGV_1:72,9JBE_1:72
]:29.88
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{743
}{\log_{20}
743}-\frac{216}{\log_{20}216})=147.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5YST_1
8SGV_1
187
128.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]