Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5YEW_1)}(2) \setminus P_{f(5NBN_1)}(2)|=65\),
\(|P_{f(5NBN_1)}(2) \setminus P_{f(5YEW_1)}(2)|=88\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101101100111100110111001101100100110100001010011000011010100001011101100001011111000010001101111001110111010001101010010010110010000001010001101101000101101101111010011100011110011001000100110010101011111100000110000011001000100101111000101010010010010000100010111001011011010001111010011010000101110011111011010100100100110001000110001000010100111010011001011100101010110011011001001001000001100011010001001000111000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{910
}{\log_{20}
910}-\frac{421}{\log_{20}421})=130.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5YEW_1
5NBN_1
161
149.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]