Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5YDH_1)}(2) \setminus P_{f(4RDQ_1)}(2)|=100\),
\(|P_{f(4RDQ_1)}(2) \setminus P_{f(5YDH_1)}(2)|=65\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:000111100001010110101101001011111101011111101001011001011100001100010110011101111011010011000010101111010100111111111111001010101000011100001111010001101111111010111011110001110110001001110100101110011110101011011000110011100101011111100001010110110111010010010011001010010111000110111001111111011110001000110101000011010000010011100100110000110100001101100101010111001111000010010010000011001110001000100110001001001010100000010111010111010010011101101011000000010001100100110010101001000110110001010001011100011101101000111000110111100011111110010000111001011111101101010110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{985
}{\log_{20}
985}-\frac{409}{\log_{20}409})=152.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5YDH_1
4RDQ_1
196
166
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]