Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5YBP_1)}(2) \setminus P_{f(7LRS_1)}(2)|=118\),
\(|P_{f(7LRS_1)}(2) \setminus P_{f(5YBP_1)}(2)|=55\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000000000011110100111010011101010011111000101110111010011010001011100111010001000000001000111010100011000110010001100110111001000111010111110010000010111001111110011011011011000011001111001110100100000101101001111101100011010110111001000000011110110001011011010111011001000000111100010000101101110010011001111001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{510
}{\log_{20}
510}-\frac{196}{\log_{20}196})=90.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
5YBP_1
7LRS_1
117
94
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]