Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5XWP_1)}(2) \setminus P_{f(7SHG_1)}(2)|=50\),
\(|P_{f(7SHG_1)}(2) \setminus P_{f(5XWP_1)}(2)|=47\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:01010011110000000010110000000000001011101010101001000000000001101001100011010000101001000010000000011000100000111100101000100001011000100010010010001000010000100001001010000011000000010001010010011001000001101110100100100001001000111000000011011000100100100110011010010000110000100001000010011001101010011000100010010000100110000100110001100100010001000001001011000111000000111001111001101010011000000010101010010000100001010100100000000100010110000101000001001110100110010011101010101001111001110010001100010000101011001001011001000011001000010110001111101001000100100011101001000000000011010101100100101100110001011010001101000000010011001001001000110001101001011011000000000010110011101110011001010110110000000011000001001100000000101100100110010110110000010110111011000010010101000001000011000101101101000010001010100110110101001000001001000010101001100011001000111011001100110010100100000000010000010001000010100000100000000001100100000100010100101101111011001110001100010101010110000100110100000100011011000101000100000101000001010110000001011001111001101010110110010011000001001110011011000111101011100011100100001101001000011000000010011011100010000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1808
}{\log_{20}
1808}-\frac{648}{\log_{20}648})=287.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5XWP_1
7SHG_1
352
275
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]