Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5XVW_1)}(2) \setminus P_{f(8QZG_1)}(2)|=45\),
\(|P_{f(8QZG_1)}(2) \setminus P_{f(5XVW_1)}(2)|=129\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101001001100001001111011000100100000100001010101000101011100111011011111011001100001101111000011101010111010000000110110011011011010011
Pair
\(Z_2\)
Length of longest common subsequence
5XVW_1,8QZG_1
174
4
5XVW_1,1FHM_1
124
3
8QZG_1,1FHM_1
196
4
Newick tree
[
8QZG_1:10.83,
[
5XVW_1:62,1FHM_1:62
]:38.83
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{463
}{\log_{20}
463}-\frac{135}{\log_{20}135})=97.6\)
Status
Protein1
Protein2
d
d1/2
Query variables
5XVW_1
8QZG_1
122
85.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]