Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5XSI_1)}(2) \setminus P_{f(4YGT_1)}(2)|=113\),
\(|P_{f(4YGT_1)}(2) \setminus P_{f(5XSI_1)}(2)|=49\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010001010110011001110100111110001010111111110011110010101110000101010011001000101000110000110110000011110000101110001100100011100000100110011110101010001011001100010000100100011011111000010100100010110010101100110001100010001000011001010001111101000010011011011001101011010011100000111101001101010101011111101001100101101001110100110001000001
Pair
\(Z_2\)
Length of longest common subsequence
5XSI_1,4YGT_1
162
4
5XSI_1,5DNW_1
166
4
4YGT_1,5DNW_1
156
4
Newick tree
[
5XSI_1:83.29,
[
4YGT_1:78,5DNW_1:78
]:5.29
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{503
}{\log_{20}
503}-\frac{160}{\log_{20}160})=100.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5XSI_1
4YGT_1
127
93.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]