Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5XKI_1)}(2) \setminus P_{f(6DSX_1)}(2)|=192\),
\(|P_{f(6DSX_1)}(2) \setminus P_{f(5XKI_1)}(2)|=3\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000000000011110100110101100110101111011100000001100101101101000001001100010010011011000010000100110111010101010010101100000101000010010001001100101101110011000000010111001001011100111110011000001010111100101101110000010010110000000111011110001110011101010100010000110000011100001011000011010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{304
}{\log_{20}
304}-\frac{11}{\log_{20}11})=98.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
5XKI_1
6DSX_1
130
67
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]