Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5XJA_1)}(2) \setminus P_{f(5UAZ_1)}(2)|=162\),
\(|P_{f(5UAZ_1)}(2) \setminus P_{f(5XJA_1)}(2)|=31\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110101100110010001000001100100100000000100001010010000001101011011001010100011010011000010101000110000110001011011000111100101010100010001101011100010001100101011100110110100110100101000011101010000100110111000111100010000101010101101001011011000101011000000101111000110010011011011010000100110000000010101110001010101011011100011000010000010110100011110001011100010011000010011000111000000111110111000000100100100100100000000
Pair
\(Z_2\)
Length of longest common subsequence
5XJA_1,5UAZ_1
193
3
5XJA_1,4EGC_1
162
4
5UAZ_1,4EGC_1
207
4
Newick tree
[
5UAZ_1:10.65,
[
5XJA_1:81,4EGC_1:81
]:24.65
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{537
}{\log_{20}
537}-\frac{111}{\log_{20}111})=126.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5XJA_1
5UAZ_1
163
101.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]