Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5XHO_1)}(2) \setminus P_{f(4RXX_1)}(2)|=37\),
\(|P_{f(4RXX_1)}(2) \setminus P_{f(5XHO_1)}(2)|=139\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100100000000011100110101010000001011100001110011011000000000010011000000110111001001000011001011011101000100111010011000101010011000010001001001101100100111100111001100001000
Pair
\(Z_2\)
Length of longest common subsequence
5XHO_1,4RXX_1
176
4
5XHO_1,5DSV_1
154
3
4RXX_1,5DSV_1
166
4
Newick tree
[
4RXX_1:88.19,
[
5XHO_1:77,5DSV_1:77
]:11.19
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{604
}{\log_{20}
604}-\frac{174}{\log_{20}174})=123.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5XHO_1
4RXX_1
156
107.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]