Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5XAO_1)}(2) \setminus P_{f(5VYV_1)}(2)|=151\),
\(|P_{f(5VYV_1)}(2) \setminus P_{f(5XAO_1)}(2)|=42\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1110010001111111101100011011001001001011010111000011001101111010011010111010011000011001100010100101000110100100111011101000110000011001111000010110111000111111101101110010001101110111010111110110111001010000100111111110101101000010011101010101001100000111001011111010001110100011110010100111101100101100010010001101001010011101110100001100110100001011111000101001111010010010111011001101101011001101101011010110000011100110111100001010110000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{660
}{\log_{20}
660}-\frac{215}{\log_{20}215})=125.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5XAO_1
5VYV_1
156
113
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]