Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5XAA_1)}(2) \setminus P_{f(4CTN_1)}(2)|=56\),
\(|P_{f(4CTN_1)}(2) \setminus P_{f(5XAA_1)}(2)|=51\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:01011000000001101110000110100100010001000111001001101110010011101111110101111110010001011101111111111011111100001001101100001011010010000100101001111011011110011101011010000101000110100101100001110101100000011101001111011111100110001101000111000000110001001100100110110111111011010011011011011100101111111111101111110001111000110001110011010011000110000010100001010011110010101001001010100011010110000110010101110110101100000101000011000110100011001100101100010010010010100011001100010101000000101000110000111100111011101110000010110001110111000110110011010001001111000011000011100000110000010111111110110001110101000111011110100010111100011111000011001001001001111000010001001101010000011001000001011010110011110010111111010111001001111000100111110010110001001100110001101101110111111011111011110110011110111101101011001100100111011111001111101111011111111101001111000010011000000101011000110110110111011101010011001000001101111101111101010101011110101111110101101001111101011111100110111000101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1838
}{\log_{20}
1838}-\frac{843}{\log_{20}843})=243.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5XAA_1
4CTN_1
306
285
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]