Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5WDO_1)}(2) \setminus P_{f(3DQJ_1)}(2)|=65\),
\(|P_{f(3DQJ_1)}(2) \setminus P_{f(5WDO_1)}(2)|=94\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10101000011111111110011010110001100001010000000111010001101100110000011000010010111011110000010010000001001000001111111000011100100001001100011101000100001100110011001000
Pair
\(Z_2\)
Length of longest common subsequence
5WDO_1,3DQJ_1
159
3
5WDO_1,7PCG_1
154
4
3DQJ_1,7PCG_1
181
3
Newick tree
[
3DQJ_1:87.73,
[
5WDO_1:77,7PCG_1:77
]:10.73
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{413
}{\log_{20}
413}-\frac{170}{\log_{20}170})=72.2\)
Status
Protein1
Protein2
d
d1/2
Query variables
5WDO_1
3DQJ_1
92
78.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]