Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5WCG_1)}(2) \setminus P_{f(1AUS_1)}(2)|=79\),
\(|P_{f(1AUS_1)}(2) \setminus P_{f(5WCG_1)}(2)|=93\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010111110010011010110110110110111001101011010001000000100001100010000110001000000111001000111111001010001010101110001010001000111100100010010000001100011110010000101100001111110100011010000100110111101111000001011100010110101100101100110001011010000000100001100000000000000101010010011010110011001001100100100000100110100100001001100001011011001111010100101110010011010000011001011011101101011100011100110011111011010001010010001000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{908
}{\log_{20}
908}-\frac{433}{\log_{20}433})=126.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5WCG_1
1AUS_1
161
153
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]