Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5VQF_1)}(2) \setminus P_{f(4HVR_1)}(2)|=125\),
\(|P_{f(4HVR_1)}(2) \setminus P_{f(5VQF_1)}(2)|=51\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111000001010110000101101011001011011001011111110111110000000111001010101010001001001111001001000101010010111000010011101111001010110101010001010000000010010001111000101101010111001100001101101010000000000101010110010010110101100111111101100100100000001100000100000000100101010001110110010100101011101011010000001111000001110111001101101111100110010100100111000000
Pair
\(Z_2\)
Length of longest common subsequence
5VQF_1,4HVR_1
176
3
5VQF_1,7LNA_1
204
3
4HVR_1,7LNA_1
180
4
Newick tree
[
7LNA_1:98.76,
[
5VQF_1:88,4HVR_1:88
]:10.76
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{537
}{\log_{20}
537}-\frac{174}{\log_{20}174})=105.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5VQF_1
4HVR_1
134
97
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]