Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5VND_1)}(2) \setminus P_{f(8UFE_1)}(2)|=92\),
\(|P_{f(8UFE_1)}(2) \setminus P_{f(5VND_1)}(2)|=81\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111100001100101011000111101110111101111011110000100100111011000100001001100101101110000110111100001110111001001010001010011110000010001000100001100100110110011000010001110011100001101101111001001000000001011101111011100100000011011111101101110101111100110110010010010000001011100010111000101001100100111100000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{779
}{\log_{20}
779}-\frac{309}{\log_{20}309})=128.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5VND_1
8UFE_1
156
133
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]