Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5VLQ_1)}(2) \setminus P_{f(4CQG_1)}(2)|=131\),
\(|P_{f(4CQG_1)}(2) \setminus P_{f(5VLQ_1)}(2)|=50\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000000000000110000101011110100100101110011000011110110111000100011100011001010000001000010000101000000010000000010101000110011000010111000001100011000011000101101000111010100101100101001110000111000000100011001100110011000010011101110100001110011011100100001001110111011010000100100001010001011100001001101000110011010000001000001100101101010101100111101110001011101001001101100011110010111000100111111001010011110010110111000001010001101001000101000010000000000011110001100001010100111101101111111011110110010011000000101011011110010111101010101110001000101010000101110001000001111011000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{920
}{\log_{20}
920}-\frac{331}{\log_{20}331})=158.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5VLQ_1
4CQG_1
202
157
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]