Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5UYM_1)}(2) \setminus P_{f(5URN_1)}(2)|=116\),
\(|P_{f(5URN_1)}(2) \setminus P_{f(5UYM_1)}(2)|=41\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1110001001100011011010100101111110000001100001010000111100010011010000011111100100010001011111000100001111011011001001101110110011100111100100101011011011001100101110011010101001010010100010110110100110111011110101101010101101100101110100110011011110001000000000001110000
Pair
\(Z_2\)
Length of longest common subsequence
5UYM_1,5URN_1
157
3
5UYM_1,8RSE_1
142
4
5URN_1,8RSE_1
173
3
Newick tree
[
5URN_1:86.11,
[
5UYM_1:71,8RSE_1:71
]:15.11
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{386
}{\log_{20}
386}-\frac{115}{\log_{20}115})=82.6\)
Status
Protein1
Protein2
d
d1/2
Query variables
5UYM_1
5URN_1
103
72.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]