Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5URK_1)}(2) \setminus P_{f(3NNR_1)}(2)|=213\),
\(|P_{f(3NNR_1)}(2) \setminus P_{f(5URK_1)}(2)|=6\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100100110111100110100111001001110000011010100000100010111101011100001111001100101110110010010001001110000011101101110001111011001100101010101001011011110011001110110011001101101010001000010100111001001011000110000001101111001011000011110111101100101000010111101011000011011010110111010001011110000111000011001011001100011001100011111000000100101100101000011111001010001100010000010100111011110011100100011001110001011100101111101110011101001001001010011110110111011010000010111100010100010110001110001100110110101111010010011011101010101100101011000010101110000101100111110000110000001010100110110000100001000001101010010110110100010010100000101001100111110001001010101110111001010111111011010001101101110111001110100001010011000110010110010011001100100001110010010000110110110110010001011101010101011000010101010101010001010001111110010001110000111010010000110111111011110011011000110000011101001111000111001101011110110001100100001111011000110010000001111110101001010111101110000100101011011100101010001000100011110100000101110101110010010110001000001001011110010111100111101100010010001001101111000100100110111001000101010101111010101101000000110110110011000010011111110000001011011000110100001100000011101001000010001101110100110110001100110011101111000101110111011111000000101010100110011011101001100001001110010000110011001111000100010001010110001000001100101011000100010000101100001000100110001001000001010001011110111111000100001011010101000101110110011000011100000011001100110010010100101000111010100101010100000011001101101010110001110111111011011001110000010011010000100000011001101101000000111010000110110100001010100011000010011111111010000010111111111000001111111010000110100101000101010111110110000101100101100000010101001
Pair
\(Z_2\)
Length of longest common subsequence
5URK_1,3NNR_1
219
5
5URK_1,4WKA_1
160
5
3NNR_1,4WKA_1
167
4
Newick tree
[
3NNR_1:10.51,
[
5URK_1:80,4WKA_1:80
]:22.51
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1966
}{\log_{20}
1966}-\frac{228}{\log_{20}228})=442.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5URK_1
3NNR_1
560
314
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]