Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5TWH_1)}(2) \setminus P_{f(2IQF_1)}(2)|=41\),
\(|P_{f(2IQF_1)}(2) \setminus P_{f(5TWH_1)}(2)|=145\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101110000000101000110100000110010101101010011111010010011110010110010110101001000100111011100000110100100110001100100110110001000011100111111001101100110011010101000010011010001010001001111100101100001111001100110000
Pair
\(Z_2\)
Length of longest common subsequence
5TWH_1,2IQF_1
186
4
5TWH_1,2YZL_1
148
3
2IQF_1,2YZL_1
172
4
Newick tree
[
2IQF_1:94.18,
[
5TWH_1:74,2YZL_1:74
]:20.18
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{721
}{\log_{20}
721}-\frac{216}{\log_{20}216})=141.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5TWH_1
2IQF_1
180
128
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]