Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5TRG_1)}(2) \setminus P_{f(2JND_1)}(2)|=102\),
\(|P_{f(2JND_1)}(2) \setminus P_{f(5TRG_1)}(2)|=55\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100110000011001110100111110111111110010001001001000111111101001001001110110001010000010100110101001101100010100101011011001000010100100010110010111111000111011000010010100110111111011010001100101111010111101001001100101011011110000100010001
Pair
\(Z_2\)
Length of longest common subsequence
5TRG_1,2JND_1
157
3
5TRG_1,9DLL_1
155
2
2JND_1,9DLL_1
108
2
Newick tree
[
5TRG_1:84.50,
[
9DLL_1:54,2JND_1:54
]:30.50
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{359
}{\log_{20}
359}-\frac{119}{\log_{20}119})=73.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
5TRG_1
2JND_1
94
69.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]