Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5SNY_1)}(2) \setminus P_{f(3QQZ_1)}(2)|=98\),
\(|P_{f(3QQZ_1)}(2) \setminus P_{f(5SNY_1)}(2)|=58\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100001110111110111101100101111100111110010101000011101011010001010010010111001111010110001101001000011101101111100100000011001100101111110110110111010111011001100100010001111100110101011111100111011111111110110000001001001100000111100101111100100101011010101111110101101011100111110010011001110100100101010001110110111100111001011010000010101111111101110111100011110101001001001011100101001011100011111001011100110
Pair
\(Z_2\)
Length of longest common subsequence
5SNY_1,3QQZ_1
156
5
5SNY_1,7RSI_1
159
4
3QQZ_1,7RSI_1
173
4
Newick tree
[
7RSI_1:84.69,
[
5SNY_1:78,3QQZ_1:78
]:6.69
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{669
}{\log_{20}
669}-\frac{255}{\log_{20}255})=115.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5SNY_1
3QQZ_1
144
116.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]