Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5SMA_1)}(2) \setminus P_{f(5KUJ_1)}(2)|=195\),
\(|P_{f(5KUJ_1)}(2) \setminus P_{f(5SMA_1)}(2)|=23\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0111000001101101001100101000100011010111110010000110111101000101010111000011001011111010100100011100111011100110111110101001000010010101111001001111100111101101011011000100100011111110110100100110111000001000010010010000101000111001001111010011101010000010001010101100011100011100011001010100111100101011000100111011111001111001101011001101010101001010000100100110001000001001101110001000110011001000110010111001101010001100111000111010011110000010000100110010011100100100001111100001000010101001110111011100010000110010010
Pair
\(Z_2\)
Length of longest common subsequence
5SMA_1,5KUJ_1
218
3
5SMA_1,8FZB_1
194
4
5KUJ_1,8FZB_1
154
3
Newick tree
[
5SMA_1:11.53,
[
8FZB_1:77,5KUJ_1:77
]:33.53
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{647
}{\log_{20}
647}-\frac{124}{\log_{20}124})=151.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5SMA_1
5KUJ_1
195
118.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]