Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5RWN_1)}(2) \setminus P_{f(4HBY_1)}(2)|=167\),
\(|P_{f(4HBY_1)}(2) \setminus P_{f(5RWN_1)}(2)|=25\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0100101011011110101101111001001110010100000010011001011100001100001101100010010010100111001101011111010000010010000100111001100111110111010011110001001000010000001011011111000101101000100111110100010110101001100100000101100001100000001110100001011100010010000010000010110001101000111000111011000010000110000011110101110001100011101000101011000101000000010101000010011000010000100101110110011010111001001100011101000000000101011101010000111001100010101010101010000
Pair
\(Z_2\)
Length of longest common subsequence
5RWN_1,4HBY_1
192
3
5RWN_1,6EAF_1
140
4
4HBY_1,6EAF_1
212
4
Newick tree
[
4HBY_1:10.55,
[
5RWN_1:70,6EAF_1:70
]:39.55
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{590
}{\log_{20}
590}-\frac{127}{\log_{20}127})=134.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5RWN_1
4HBY_1
175
108.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]