Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5RHW_1)}(2) \setminus P_{f(7VJS_1)}(2)|=132\),
\(|P_{f(7VJS_1)}(2) \setminus P_{f(5RHW_1)}(2)|=45\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000101101011110000111011001100010011111001111010011011110010011010001001101100101000110110110001011001010010011101010001011011111101011100011100001110001011001100110110000100111110100100111010011001101000010001000000010111000100111010100110000010111101001111111110010110001011001001100010111010000101011010111001010011110100101001111010101000000011011001011111100110111000000101010000011000111011000100011010110101000011100100111100
Pair
\(Z_2\)
Length of longest common subsequence
5RHW_1,7VJS_1
177
4
5RHW_1,3NNE_1
148
4
7VJS_1,3NNE_1
185
3
Newick tree
[
7VJS_1:95.39,
[
5RHW_1:74,3NNE_1:74
]:21.39
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{681
}{\log_{20}
681}-\frac{246}{\log_{20}246})=121.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5RHW_1
7VJS_1
154
117.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]