Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5PYZ_1)}(2) \setminus P_{f(3FJJ_1)}(2)|=95\),
\(|P_{f(3FJJ_1)}(2) \setminus P_{f(5PYZ_1)}(2)|=69\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:000010010001101100000100100000110101000110011001001000010000100000111001110001000111101000000011100100000100110011110010001000100010111001011100000100000100111010011000100111100000
Pair
\(Z_2\)
Length of longest common subsequence
5PYZ_1,3FJJ_1
164
3
5PYZ_1,4YPC_1
138
3
3FJJ_1,4YPC_1
124
3
Newick tree
[
5PYZ_1:79.84,
[
4YPC_1:62,3FJJ_1:62
]:17.84
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{326
}{\log_{20}
326}-\frac{146}{\log_{20}146})=55.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
5PYZ_1
3FJJ_1
71
64.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]