Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5OWX_1)}(2) \setminus P_{f(3PKG_1)}(2)|=52\),
\(|P_{f(3PKG_1)}(2) \setminus P_{f(5OWX_1)}(2)|=117\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00000111110011010010100110110000011111110110001001011100010101110111011100000101000111001111001100111010010000010000010110011011001110100111010110011101001010010111110100000000011111
Pair
\(Z_2\)
Length of longest common subsequence
5OWX_1,3PKG_1
169
3
5OWX_1,4EUU_1
183
4
3PKG_1,4EUU_1
162
3
Newick tree
[
5OWX_1:90.30,
[
3PKG_1:81,4EUU_1:81
]:9.30
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{484
}{\log_{20}
484}-\frac{182}{\log_{20}182})=88.2\)
Status
Protein1
Protein2
d
d1/2
Query variables
5OWX_1
3PKG_1
113
88.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]