Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5OTT_1)}(2) \setminus P_{f(6MOZ_1)}(2)|=24\),
\(|P_{f(6MOZ_1)}(2) \setminus P_{f(5OTT_1)}(2)|=192\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:01011010110010010000000000100011110011000010001011010110110100110111100110101001001011110000001110010000000010000100
Pair
\(Z_2\)
Length of longest common subsequence
5OTT_1,6MOZ_1
216
3
5OTT_1,7MBY_1
196
3
6MOZ_1,7MBY_1
160
4
Newick tree
[
5OTT_1:10.75,
[
7MBY_1:80,6MOZ_1:80
]:29.75
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{613
}{\log_{20}
613}-\frac{116}{\log_{20}116})=144.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5OTT_1
6MOZ_1
186
113
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]