Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5OTR_1)}(2) \setminus P_{f(6OGL_1)}(2)|=149\),
\(|P_{f(6OGL_1)}(2) \setminus P_{f(5OTR_1)}(2)|=34\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:011110010100010000100010000011011000000110011010000110110100000111011011111010001011001011101101101100110001111100100001001000100001010100110110000011110001010011100000010110111101001100001011000101101110001000010110110111011100011101000000110110111000100010000101010100111000000100110000001101011011001100000001010011001010011000110010100110
Pair
\(Z_2\)
Length of longest common subsequence
5OTR_1,6OGL_1
183
3
5OTR_1,1LXF_1
183
3
6OGL_1,1LXF_1
112
3
Newick tree
[
5OTR_1:10.58,
[
6OGL_1:56,1LXF_1:56
]:44.58
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{441
}{\log_{20}
441}-\frac{99}{\log_{20}99})=103.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5OTR_1
6OGL_1
131
84
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]