Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5ORW_1)}(2) \setminus P_{f(1JVR_1)}(2)|=129\),
\(|P_{f(1JVR_1)}(2) \setminus P_{f(5ORW_1)}(2)|=58\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0111001011011101011010110000001111101110101001110001000101000100101101010100100101110011110100010010010000010010011011000000011000101001111011010110111010110000001110100111011010100001011011110001111011101000000000100101011011001100110011000100011100110011101000010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{402
}{\log_{20}
402}-\frac{137}{\log_{20}137})=79.8\)
Status
Protein1
Protein2
d
d1/2
Query variables
5ORW_1
1JVR_1
103
75
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]