Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5ONP_1)}(2) \setminus P_{f(2IRX_1)}(2)|=83\),
\(|P_{f(2IRX_1)}(2) \setminus P_{f(5ONP_1)}(2)|=77\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010001111011110000100000000010000010111000100000111011101000111000111101000111000000010001000100111000100001000111010011010101001111011101110010011000011110000011100110011101101010001010110010011101001001001100101000000001000011101001110011011001100011011111000110110011000101000100101111001001010000011010011011110
Pair
\(Z_2\)
Length of longest common subsequence
5ONP_1,2IRX_1
160
5
5ONP_1,1UPT_1
164
3
2IRX_1,1UPT_1
158
4
Newick tree
[
5ONP_1:81.66,
[
2IRX_1:79,1UPT_1:79
]:2.66
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{619
}{\log_{20}
619}-\frac{303}{\log_{20}303})=88.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
5ONP_1
2IRX_1
112
107.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]