Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5OKR_1)}(2) \setminus P_{f(4YGH_1)}(2)|=172\),
\(|P_{f(4YGH_1)}(2) \setminus P_{f(5OKR_1)}(2)|=35\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000000000010111101111110110010111000101101101110011001010010111000000000111110111010010101001110101110001101000110010001101110100101101110101110000110010001101100110010011010000111011001110111100100100100110110101100100011010111011001101000010011110010010001110101111010111001000110101111010110110101111000000010001101110111000100100000111111001001010000101110111101110011000011111000111010010110110000010010001001001100110111001101001101101000001110100000000010010000101000110001101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{622
}{\log_{20}
622}-\frac{137}{\log_{20}137})=140.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5OKR_1
4YGH_1
177
112
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]