Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5OGJ_1)}(2) \setminus P_{f(3WVN_1)}(2)|=48\),
\(|P_{f(3WVN_1)}(2) \setminus P_{f(5OGJ_1)}(2)|=114\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11001011000001110100111110100001101000010000010110100010010110001001010100000001101111010001001010110100010001101100110101101000001011011001011111111101101000100100010010001000010010110111101001001101011111001011110011010000110100110010101111110000110110100101010
Pair
\(Z_2\)
Length of longest common subsequence
5OGJ_1,3WVN_1
162
4
5OGJ_1,8RJF_1
156
4
3WVN_1,8RJF_1
142
4
Newick tree
[
5OGJ_1:82.15,
[
8RJF_1:71,3WVN_1:71
]:11.15
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{804
}{\log_{20}
804}-\frac{263}{\log_{20}263})=148.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5OGJ_1
3WVN_1
184
137
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]