Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5NIY_1)}(2) \setminus P_{f(6LAP_1)}(2)|=99\),
\(|P_{f(6LAP_1)}(2) \setminus P_{f(5NIY_1)}(2)|=91\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111010001100000110111011010010001100100011110111000001100100110000100101101110001101110100110101011111111110111000011011001000100111111001011110010111000011111000110010111011011010010111100110100000110010011011001010110011101010010011001011001111011010010101011111011001111100111100100101101001101111000000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{535
}{\log_{20}
535}-\frac{226}{\log_{20}226})=88.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
5NIY_1
6LAP_1
111
97.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]