Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5NAW_1)}(2) \setminus P_{f(8TLZ_1)}(2)|=87\),
\(|P_{f(8TLZ_1)}(2) \setminus P_{f(5NAW_1)}(2)|=75\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111001010101011010101101011111100111011001001101010111110010010100010011011101000100100011110100010111110111100100011110100111111100110010010011111100100000000011100011010000000001001111101111011100100101000011100011001111001110111
Pair
\(Z_2\)
Length of longest common subsequence
5NAW_1,8TLZ_1
162
3
5NAW_1,4QWU_1
168
4
8TLZ_1,4QWU_1
186
3
Newick tree
[
4QWU_1:91.01,
[
5NAW_1:81,8TLZ_1:81
]:10.01
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{420
}{\log_{20}
420}-\frac{188}{\log_{20}188})=68.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
5NAW_1
8TLZ_1
84
76.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]