Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5MUA_1)}(2) \setminus P_{f(1PKZ_1)}(2)|=108\),
\(|P_{f(1PKZ_1)}(2) \setminus P_{f(5MUA_1)}(2)|=75\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010101100110101100011100000100010111000110110011110111010000100111100101110110010111100101100001110010011010000010110110101110101111001000000010100100011010101110111000100010011011100001001101011100110001100001101101111011000101011111011111000011010011100101001011010010001011000101111
Pair
\(Z_2\)
Length of longest common subsequence
5MUA_1,1PKZ_1
183
4
5MUA_1,9LAE_1
159
4
1PKZ_1,9LAE_1
146
4
Newick tree
[
5MUA_1:89.54,
[
9LAE_1:73,1PKZ_1:73
]:16.54
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{508
}{\log_{20}
508}-\frac{222}{\log_{20}222})=82.3\)
Status
Protein1
Protein2
d
d1/2
Query variables
5MUA_1
1PKZ_1
105
95
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]