Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5MLG_1)}(2) \setminus P_{f(8IMW_1)}(2)|=153\),
\(|P_{f(8IMW_1)}(2) \setminus P_{f(5MLG_1)}(2)|=33\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000101101110011010011000110100101011011000010010011110001000001011110100010111001010111100001110010010010000000001001001010010101011100011011111100011010011111111101011111111101101111110011000110001101000000011110111110010000101001010011010101011011110110001011110010001011000101110111100001000110000110110101011100001001001000110000101111011011110111111110110010001000000111111011000000
Pair
\(Z_2\)
Length of longest common subsequence
5MLG_1,8IMW_1
186
6
5MLG_1,3TKQ_1
180
6
8IMW_1,3TKQ_1
158
6
Newick tree
[
5MLG_1:95.31,
[
3TKQ_1:79,8IMW_1:79
]:16.31
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{524
}{\log_{20}
524}-\frac{135}{\log_{20}135})=114.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5MLG_1
8IMW_1
147
96.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]