Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5MIL_1)}(2) \setminus P_{f(9ASL_1)}(2)|=22\),
\(|P_{f(9ASL_1)}(2) \setminus P_{f(5MIL_1)}(2)|=190\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100000000001111010011010110011010100010100100110100010001101010000110110110110010010010001101101010011011111101100011010010011100110101000011001100110111100001011101100100100110100001000000001010110101
Pair
\(Z_2\)
Length of longest common subsequence
5MIL_1,9ASL_1
212
4
5MIL_1,6BQH_1
168
6
9ASL_1,6BQH_1
156
4
Newick tree
[
5MIL_1:10.82,
[
6BQH_1:78,9ASL_1:78
]:22.82
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1096
}{\log_{20}
1096}-\frac{202}{\log_{20}202})=241.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5MIL_1
9ASL_1
302
184
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]