Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5LTA_1)}(2) \setminus P_{f(5OQN_1)}(2)|=54\),
\(|P_{f(5OQN_1)}(2) \setminus P_{f(5LTA_1)}(2)|=59\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110010010110000101101000000010110100011100000011010000011111100101000011001100011000101110001001111011001100101011001100101000000001100100101100110000100000111001000011001111110010000001011110101010010001101111111100011011001010000101110011010100101011111010001001000101010011000011110101101011100000110011011011101100011100110001010111011011100001001000100111011001010001101100011001010000110001100001011000100011010011100110101101111001101100100110100010101110110011101111111100101000001101001101101110110100010010101101010010110100100110101001001000011000010010010101001100011011001100000000100111111110111000000010001000011110100010010011100011100000100100101011101111000100100101001100110010000110100110010100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1585
}{\log_{20}
1585}-\frac{714}{\log_{20}714})=216.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5LTA_1
5OQN_1
275
250.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]