Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5LSQ_1)}(2) \setminus P_{f(8ZNZ_1)}(2)|=61\),
\(|P_{f(8ZNZ_1)}(2) \setminus P_{f(5LSQ_1)}(2)|=99\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10001000000010010110010101101011011101100011101000000000000111100010001101000010010001011010010110101101101000101100010111100111111000000010011001111100110101111011100100100011001011011100001001111000011111110001111010111010000001111000111100001101101011110111101101101101100100101000001101010010101010111010100010010010011100010010000100000110100100000001010
Pair
\(Z_2\)
Length of longest common subsequence
5LSQ_1,8ZNZ_1
160
3
5LSQ_1,6JCE_1
221
3
8ZNZ_1,6JCE_1
259
3
Newick tree
[
6JCE_1:13.09,
[
5LSQ_1:80,8ZNZ_1:80
]:51.09
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{883
}{\log_{20}
883}-\frac{359}{\log_{20}359})=140.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5LSQ_1
8ZNZ_1
179
150.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]