Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5LRY_1)}(2) \setminus P_{f(1IVR_1)}(2)|=77\),
\(|P_{f(1IVR_1)}(2) \setminus P_{f(5LRY_1)}(2)|=108\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10001011111101100000000110010111001110110100000111111001001100110000100111101011110011101001011100100111110111111001011010110101001011001100011101110111101101110011010011010011011110100100000001010110110010001100100100110011000010000010011011100101011010011100101000110110110000100111011111111111011101100000000010000001100000100000000
Pair
\(Z_2\)
Length of longest common subsequence
5LRY_1,1IVR_1
185
4
5LRY_1,5AMP_1
185
4
1IVR_1,5AMP_1
182
5
Newick tree
[
5LRY_1:92.99,
[
1IVR_1:91,5AMP_1:91
]:1.99
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{736
}{\log_{20}
736}-\frac{335}{\log_{20}335})=109.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5LRY_1
1IVR_1
143
129
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]