Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5LPF_1)}(2) \setminus P_{f(5DUD_1)}(2)|=68\),
\(|P_{f(5DUD_1)}(2) \setminus P_{f(5LPF_1)}(2)|=99\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101010101010100110101101101001111100011101100100111101100011110100100000011010000101111100000001111011011111101011011000101100001111100110010000110000101101000011011110001101110010010000011111000010111011101010100111000100010110011000
Pair
\(Z_2\)
Length of longest common subsequence
5LPF_1,5DUD_1
167
4
5LPF_1,6QPZ_1
173
4
5DUD_1,6QPZ_1
164
4
Newick tree
[
5LPF_1:85.99,
[
5DUD_1:82,6QPZ_1:82
]:3.99
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{544
}{\log_{20}
544}-\frac{234}{\log_{20}234})=88.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
5LPF_1
5DUD_1
112
98
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]