Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5LOH_1)}(2) \setminus P_{f(1NCP_1)}(2)|=205\),
\(|P_{f(1NCP_1)}(2) \setminus P_{f(5LOH_1)}(2)|=5\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11010101100001111110001100111101101001011011001111010110011010110110010110001000101000111100011110100010010010111001111010011010101000111001001111100100011100010100111000101010011100101000101101100001010100111011110101111011111101101101111100001001100110001111010001000100110111010000011100100011100101001000011111010000000010100010010101101
Pair
\(Z_2\)
Length of longest common subsequence
5LOH_1,1NCP_1
210
3
5LOH_1,3DVR_1
152
3
1NCP_1,3DVR_1
166
3
Newick tree
[
1NCP_1:10.08,
[
5LOH_1:76,3DVR_1:76
]:24.08
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{358
}{\log_{20}
358}-\frac{17}{\log_{20}17})=111.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5LOH_1
1NCP_1
142
74
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]