Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5LMX_1)}(2) \setminus P_{f(8GPP_1)}(2)|=204\),
\(|P_{f(8GPP_1)}(2) \setminus P_{f(5LMX_1)}(2)|=4\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10100111001001011110100100101001001011001101101110011111110010000110001011001010111100011110010101010011000101001010001001011001110000010010110100010000011000000101010000001000110010000000101111011001000001010101000000110010001100100000111010100011001100110000100001011100011000001001010001010000010110010001001000110001001100110000011001100010100011010011101111110010110011001000000011001100011100100010010000101000011100110111010001011100001010001011111100110000111000111001001100110101010000111111111010010110100110100111011001111001000010110111101000011100110100010000100010001000011110001010010111001011100001010010011001010100101011000010101101100000010100101101110001011111000001100000000101010100100000011011101101011101001100111010110111101100001000011010100011100111101110000011000111001001011011101101110110001010110011001010101001000110001001001110100100001100101100100110000001110110000101100011000110101001100010111101101001010011011100110100111110100110101000011111010101001101000010011100111001100000101000100010110100000100101011011011011010000010010101000011100001011100101001100000010000000001000001000111100011001101000100010011000001100001100001011101001001101101111110001101000101001011101110101111010011101011100101011110010000100100010011100110011100001000011101100011010110000000000100001001100011011011110010000000110111111010001100000000100000000000000011000010000100100100000001100000000000000101000100011010001001000000111000011000010000101001010111000011110110010000110011010001010100100111001101011100011101011000011111000110110001100100110001101010010111011000100111000110000001101000000011001110000001001010111101001101010111011011
Pair
\(Z_2\)
Length of longest common subsequence
5LMX_1,8GPP_1
208
4
5LMX_1,2JCS_1
214
4
8GPP_1,2JCS_1
158
3
Newick tree
[
5LMX_1:11.97,
[
8GPP_1:79,2JCS_1:79
]:33.97
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1872
}{\log_{20}
1872}-\frac{208}{\log_{20}208})=426.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5LMX_1
8GPP_1
545
303
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]