Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5LKW_1)}(2) \setminus P_{f(7LNR_1)}(2)|=48\),
\(|P_{f(7LNR_1)}(2) \setminus P_{f(5LKW_1)}(2)|=128\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1110110010011100010101000010000011100010010001000111010000010000011110001011001111111000010110110001010100010110000101100010000000
Pair
\(Z_2\)
Length of longest common subsequence
5LKW_1,7LNR_1
176
3
5LKW_1,4PKF_1
248
6
7LNR_1,4PKF_1
194
4
Newick tree
[
4PKF_1:11.07,
[
5LKW_1:88,7LNR_1:88
]:30.07
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{442
}{\log_{20}
442}-\frac{130}{\log_{20}130})=93.4\)
Status
Protein1
Protein2
d
d1/2
Query variables
5LKW_1
7LNR_1
117
82
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]